Specifications of a quantum computer for factoring

Noboru Kunihiro

The University of Electro-Communications, Japan

Asiacrypt2004 rump session, Jeju island, Korea 7th, Dec. 2004

Factoring by Quantum: in Theory

In 1994, Peter Shor proposed a good factoring algorithm. This algorithm succeeds in factoring in polynomial time.

In Theory: If the large-scale quantum computers are realized, RSA, ElGamal and ECC will be totally broken.

But, in practice?

Factoring by Quantum : Now and Future

Current Technology

In 2001, Chuang et.al. implemented the Shor's factoring algorithm by using NMR with 7 qubits to factorize 15.

Target of Near Future:

factoring 128bit composite within 30seconds.

Final Target of Future:

factoring 1024 bit composite within practical time.

Candidates of Algorithms

	# of qubits	# of gates
based on R-ADD	3 <i>n</i> +2	270 <i>n</i> ³
based on Q-ADD	2 <i>n</i> +3	97 <i>n</i> ⁴

of qubits and gates for 576 and 1024 bits

	576bit integer		1024bit integer	
	qubit	# of gates	qubit	# of gates
R-ADD	1730	5.14*10^10	3074	2.90*10^11
Q-ADD	1155	3.34*10^11	2051	2.14*10^11
(with Approx.)				

Candidates of Devices

We need at least 10^{10} operations.

	maximal available time	gate operation time	max of gate operation
Nuclear Spin	$10^{-2} - 10^8 \sec$	10^{-3} - 10^{5} sec	10 ⁻⁵ -10 ¹⁴
Electron Smin	10^{-3} and	10-7	104
	10-1	10-14	10
Ion trap	10 ^{-r} sec	10^{14} sec	1013
Ouantum dot	10^{-6} sec	10^{-9} sec	10^{3}
		10 500	10
Optical convitu	10-5	10-14	109
Microwave	$10^0 \mathrm{sec}$	10^{-4} sec	10 ⁴
cavity			

(QIC by Nielsen and Chuang,)

Running Time for 576 bit composite

gate operation	1msec	$10 \mu \text{sec}$	1μ sec
time	10^{-3} sec.	10^{-4} sec.	10^{-6} sec.
R-ADD	1.63Years	6days	14Hours
Q-ADD with approximation	11Yeasr	1.3 Month	3.9days

To factorize within 1 month, the gate operation time should be less than 50 μ sec, 7.8 μ sec.

Candidates of Devices (again)

less than 50 μ sec, 7.8 μ sec

		maximal available time	gate operation time	max of gate operation
	Nuclear Crin	10-2 108 200	10-3 105 200	10-5 1014
	ruorear opin			
	Electron Spin	10-3	10-7	104
				10
• •	Ion trap	10 ⁻¹ sec	10 ⁻¹⁴ sec	10 ¹³
	Ouronture dat	10-6	10-9	103
				10
	Optical apritu	10-5 000	10-14	109
	option option			10
	Microwaye	10 ⁰ sec	10 ⁻⁴ sec	104
	cavity			

But, less scalability

Conclusion:

- Factoring seems difficult if we follow the current technology and the extension of the current technology.
- BUT, I never claim that factoring is impossible.
- We need some kinds of big breakthrough !!!
 - What kinds of breakthrough?
 - 1. new devices?
 - 2. new algorithm?
 - 3. development of parallel computation?

NMR: 7qubits and very slow operation2qubits

•more than 1730 qubits and faster than 50 μ sec •more than 1115 qubits and faster than 7.8 μ sec